手機閱讀

高一必修二數(shù)學知識點總結(jié)人教版(大全8篇)

格式:DOC 上傳日期:2023-12-15 20:40:04 頁碼:12
高一必修二數(shù)學知識點總結(jié)人教版(大全8篇)
2023-12-15 20:40:04    小編:GZ才子

工作學習中一定要善始善終,只有總結(jié)才標志工作階段性完成或者徹底的終止。通過總結(jié)對工作學習進行回顧和分析,從中找出經(jīng)驗和教訓,引出規(guī)律性認識,以指導(dǎo)今后工作和實踐活動。大家想知道怎么樣才能寫一篇比較優(yōu)質(zhì)的總結(jié)嗎?以下是小編為大家收集的總結(jié)范文,僅供參考,大家一起來看看吧。

高一必修二數(shù)學知識點總結(jié)人教版篇一

基本初等函數(shù)性質(zhì)的考查,以導(dǎo)數(shù)知識為背景的函數(shù)問題;以向量知識為背景的函數(shù)問題;從具體函數(shù)的考查轉(zhuǎn)向抽象函數(shù)考查;從重結(jié)果考查轉(zhuǎn)向重過程考查;從熟悉情景的考查轉(zhuǎn)向新穎情景的考查。

向量具有數(shù)與形的雙重性,高考中向量試題的命題趨向:考查平面向量的基本概念和運算律;考查平面向量的坐標運算;考查平面向量與幾何、三角、代數(shù)等學科的綜合性問題。

突出工具性,淡化獨立性,突出解,是不等式命題的新取向。高考中不等式試題的命題趨向:基本的線性規(guī)劃問題為必考內(nèi)容,不等式的性質(zhì)與指數(shù)函數(shù)、對數(shù)函數(shù)、三角函數(shù)、二交函數(shù)等結(jié)合起來,考查不等式的性質(zhì)、最值、函數(shù)的單調(diào)性等;證明不等式的試題,多以函數(shù)、數(shù)列、解析幾何等知識為背景,在知識網(wǎng)絡(luò)的交匯處命題,綜合性強,能力要求高;解不等式的試題,往往與公式、根式和參數(shù)的討論聯(lián)系在一起。考查學生的等價轉(zhuǎn)化能力和分類討論能力;以當前經(jīng)濟、社會生產(chǎn)、生活為背景與不等式綜合的應(yīng)用題仍將是高考的熱點,主要考查學生閱讀理解能力以及分析問題、解決問題的能力。

20xx年已經(jīng)變得簡單,20xx年難度依然不大,基本的三視圖的考查難點不大,以及球與幾何體的組合體,涉及切,接的問題,線面垂直、平行位置關(guān)系的考查,已經(jīng)線面角,面面角和幾何體的體積計算等問題,都是重點考查內(nèi)容。

小題主要涉及圓錐曲線方程,和直線與圓的位置關(guān)系,以及圓錐曲線幾何性質(zhì)的考查,極坐標下的解析幾何知識,解答題主要考查直線和圓的知識,直線與圓錐曲線的知識,涉及圓錐曲線方程,直線與圓錐曲線方程聯(lián)立,定點,定值,范圍的考查,考試的難度降低。

導(dǎo)數(shù)的考查還是以理科19題,文科20題的形式給出,從常見函數(shù)入手,導(dǎo)數(shù)工具作用(切線和單調(diào)性)的考查,綜合性強,能力要求高;往往與公式、導(dǎo)數(shù)往往與參數(shù)的討論聯(lián)系在一起,考查轉(zhuǎn)化與化歸能力,但今年的難點整體偏低。

答案不,或是邏輯推理題,以及解答題中的開放型試題的考查,都是重點,理科13,文科14題。

高一必修二數(shù)學知識點總結(jié)人教版篇二

2、函數(shù)單調(diào)性的判斷和證明:

(1)定義法。

(2)復(fù)合函數(shù)分析法。

(3)導(dǎo)數(shù)證明法。

(4)圖象法。

二、函數(shù)的奇偶性和周期性。

1、函數(shù)的奇偶性和周期性的定義。

2、函數(shù)的奇偶性的判定和證明方法。

3、函數(shù)的周期性的判定方法。

三、函數(shù)的圖象。

1、函數(shù)圖象的作法。

(1)描點法。

(2)圖象變換法。

2、圖象變換包括圖象:

平移變換、伸縮變換、對稱變換、翻折變換。

高一必修二數(shù)學知識點總結(jié)人教版篇三

一個東西是集合還是元素并不是絕對的,很多情況下是相對的,集合是由元素組成的集合,元素是組成集合的元素。

例如:你所在的班級是一個集合,是由幾十個和你同齡的同學組成的集合,你相對于這個班級集合來說,是它的一個元素;而整個學校又是由許許多多個班級組成的集合,你所在的班級只是其中的一分子,是一個元素。

班級相對于你是集合,相對于學校是元素,參照物不同,得到的結(jié)論也不同,可見,是集合還是元素,并不是絕對的。

解集合問題的關(guān)鍵。

解集合問題的關(guān)鍵:弄清集合是由哪些元素所構(gòu)成的,也就是將抽象問題具體化、形象化,將特征性質(zhì)描述法表示的集合用列舉法來表示,或用韋恩圖來表示抽象的集合,或用圖形來表示集合;比如用數(shù)軸來表示集合,或是集合的元素為有序?qū)崝?shù)對時,可用平面直角坐標系中的圖形表示相關(guān)的集合等。

高一必修二數(shù)學知識點總結(jié)人教版篇四

本節(jié)知識包括函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對稱性和函數(shù)的圖象等知識點。函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對稱性是學習函數(shù)的圖象的基礎(chǔ),函數(shù)的圖象是它們的綜合。所以理解了前面的幾個知識點,函數(shù)的圖象就迎刃而解了。

1、函數(shù)單調(diào)性的定義。

2、函數(shù)單調(diào)性的判斷和證明:

(1)定義法。

(2)復(fù)合函數(shù)分析法。

(3)導(dǎo)數(shù)證明法。

(4)圖象法。

1、函數(shù)的奇偶性和周期性的定義。

2、函數(shù)的奇偶性的判定和證明方法。

3、函數(shù)的周期性的判定方法。

1、函數(shù)圖象的作法。

(1)描點法。

(2)圖象變換法。

2、圖象變換包括圖象:平移變換、伸縮變換、對稱變換、翻折變換。

本節(jié)是段考和高考必不可少的考查內(nèi)容,是段考和高考考查的重點和難點。選擇題、填空題和解答題都有,并且題目難度較大。在解答題中,它可以和高中數(shù)學的每一章聯(lián)合考查,多屬于拔高題。多考查函數(shù)的單調(diào)性、最值和圖象等。

1、求函數(shù)的單調(diào)區(qū)間,必須先求函數(shù)的定義域,即遵循“函數(shù)問題定義域優(yōu)先的原則”。

2、單調(diào)區(qū)間必須用區(qū)間來表示,不能用集合或不等式,單調(diào)區(qū)間一般寫成開區(qū)間,不必考慮端點問題。

3、在多個單調(diào)區(qū)間之間不能用“或”和“”連接,只能用逗號隔開。

4、判斷函數(shù)的奇偶性,首先必須考慮函數(shù)的定義域,如果函數(shù)的定義域不關(guān)于原點對稱,則函數(shù)一定是非奇非偶函數(shù)。

5、作函數(shù)的圖象,一般是首先化簡解析式,然后確定用描點法或圖象變換法作函數(shù)的圖象。

高一必修二數(shù)學知識點總結(jié)人教版篇五

定理總結(jié)公理1:如果一條直線上的兩點在一個平面內(nèi),那么這條直線上的所有的點都在這個平面內(nèi)。公理2:如果兩個平面有一個公共點,那么它們有且只有一條通過這個點的公共直線。公理3:過不在同一條直線上的三個點,有且只有一個平面。

推論1:經(jīng)過一條直線和這條直線外一點,有且只有一個平面。

推論2:經(jīng)過兩條相交直線,有且只有一個平面。

推論3:經(jīng)過兩條平行直線,有且只有一個平面。

公理4:平行于同一條直線的兩條直線互相平行。

等角定理:如果一個角的兩邊和另一個角的兩邊分別平行并且方向相同,那么這兩個角相等。

高一必修二數(shù)學知識點總結(jié)人教版篇六

對數(shù)函數(shù)的一般形式為,它實際上就是指數(shù)函數(shù)的反函數(shù)。因此指數(shù)函數(shù)里對于a的規(guī)定,同樣適用于對數(shù)函數(shù)。

右圖給出對于不同大小a所表示的函數(shù)圖形:

可以看到對數(shù)函數(shù)的圖形只不過的指數(shù)函數(shù)的圖形的關(guān)于直線y=x的對稱圖形,因為它們互為反函數(shù)。

(1)對數(shù)函數(shù)的定義域為大于0的實數(shù)集合。

(2)對數(shù)函數(shù)的值域為全部實數(shù)集合。

(3)函數(shù)總是通過(1,0)這點。

(4)a大于1時,為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時,函數(shù)為單調(diào)遞減函數(shù),并且下凹。

(5)顯然對數(shù)函數(shù)。

高一必修二數(shù)學知識點總結(jié)人教版篇七

對數(shù)函數(shù)的一般形式為,它實際上就是指數(shù)函數(shù)的反函數(shù)。因此指數(shù)函數(shù)里對于a的規(guī)定,同樣適用于對數(shù)函數(shù)。

對于不同大小a所表示的函數(shù)圖形:

可以看到對數(shù)函數(shù)的圖形只不過的指數(shù)函數(shù)的圖形的關(guān)于直線y=x的對稱圖形,因為它們互為反函數(shù)。

(1)對數(shù)函數(shù)的定義域為大于0的實數(shù)集合。

(2)對數(shù)函數(shù)的值域為全部實數(shù)集合。

(3)函數(shù)總是通過(1,0)這點。

(4)a大于1時,為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時,函數(shù)為單調(diào)遞減函數(shù),并且下凹。

(5)顯然對數(shù)函數(shù)無界。

高一必修二數(shù)學知識點總結(jié)人教版篇八

集合的中元素的三個特性:

元素的確定性如:世界上的山。

元素的互異性如:由happy的字母組成的集合{h,a,p,y}。

元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合。

3。集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}。

用拉丁字母表示集合:a={我校的籃球隊員},b={1,2,3,4,5}。

集合的表示方法:列舉法與描述法。

注意:常用數(shù)集及其記法:

非負整數(shù)集(即自然數(shù)集)記作:n。

正整數(shù)集n_n+整數(shù)集z有理數(shù)集q實數(shù)集r。

列舉法:{a,b,c……}。

語言描述法:例:{不是直角三角形的三角形}。

venn圖:

4、集合的分類:

有限集含有有限個元素的集合。

無限集含有無限個元素的集合。

空集不含任何元素的集合例:{x|x2=—5}。

您可能關(guān)注的文檔